

GREEN AMMONIA

**POWERING THE FUTURE OF
FERTILIZERS**

Presented By :

GREENZO ENERGY INDIA LIMITED

DIRECTOR'S STATEMENT

At Greenzo Energy, we believe that green ammonia is not just a fuel of the future but a cornerstone for sustainable agriculture and clean industry. By integrating renewable hydrogen with advanced ammonia technologies, we aim to decarbonize fertilizer production and empower farmers with climate-friendly solutions. Our commitment is to lead this transition—delivering innovation that supports global food security while contributing to a zero-carbon future.

Sandeep Agarwal
Founder & Managing Director

TABLE OF CONTENT

1. EXECUTIVE SUMMARY
2. WHY GREEN AMMONIA?
3. OUR TECHNOLOGY EDGE
4. PROCESS OF MAKING GREEN AMMONIA
5. HOW GREENZO CAN SUPPORT GREEN AMMONIA PRODUCTION
6. HYDROGEN PRODUCTION FOR AMMONIA SYNTHESIS
7. CONCLUSION

1. EXECUTIVE SUMMARY

Ammonia (NH_3) plays a vital role in modern industry, serving as the core component in nitrogen-based fertilizers, with approximately 80% of global production directed to this sector. Today, most ammonia is produced from non-renewable fuels, with around 72% derived from natural gas via steam reforming, making it inexpensive (220-500 USD/ton) but highly carbon-intensive with the growing demand for fertilizers and the urgent need to reduce greenhouse gas emissions, shifting toward low-carbon, green ammonia presents a critical opportunity. This transition not only supports a zero-carbon future but also enables the decarbonization of fertilizer production, paving the way for sustainable agriculture worldwide.

Greenzo Energy is committed to becoming a pioneer in the hydrogen economy by bridging the gap between renewable power and clean fuel applications. With advanced alkaline electrolyzers and integrated hydrogen-to-ammonia systems, we are driving the global transition toward carbon-free fuels.

2. WHY GREEN AMMONIA?

- **Hydrogen Carrier of Choice:** Ammonia (NH_3) is the most popular green hydrogen carrier as it is carbon-free and has a high hydrogen content (17.8% by weight).
- **Efficient Energy Storage:** Easier to store and transport than hydrogen, with established global infrastructure for shipping and storage.

TECHNOLOGICAL PATHWAYS: FROM RENEWABLE HYDROGEN TO SUSTAINABLE AMMONIA

BOOSTING CROP YIELD & FOOD SECURITY

TRADITIONAL FERTILLERS

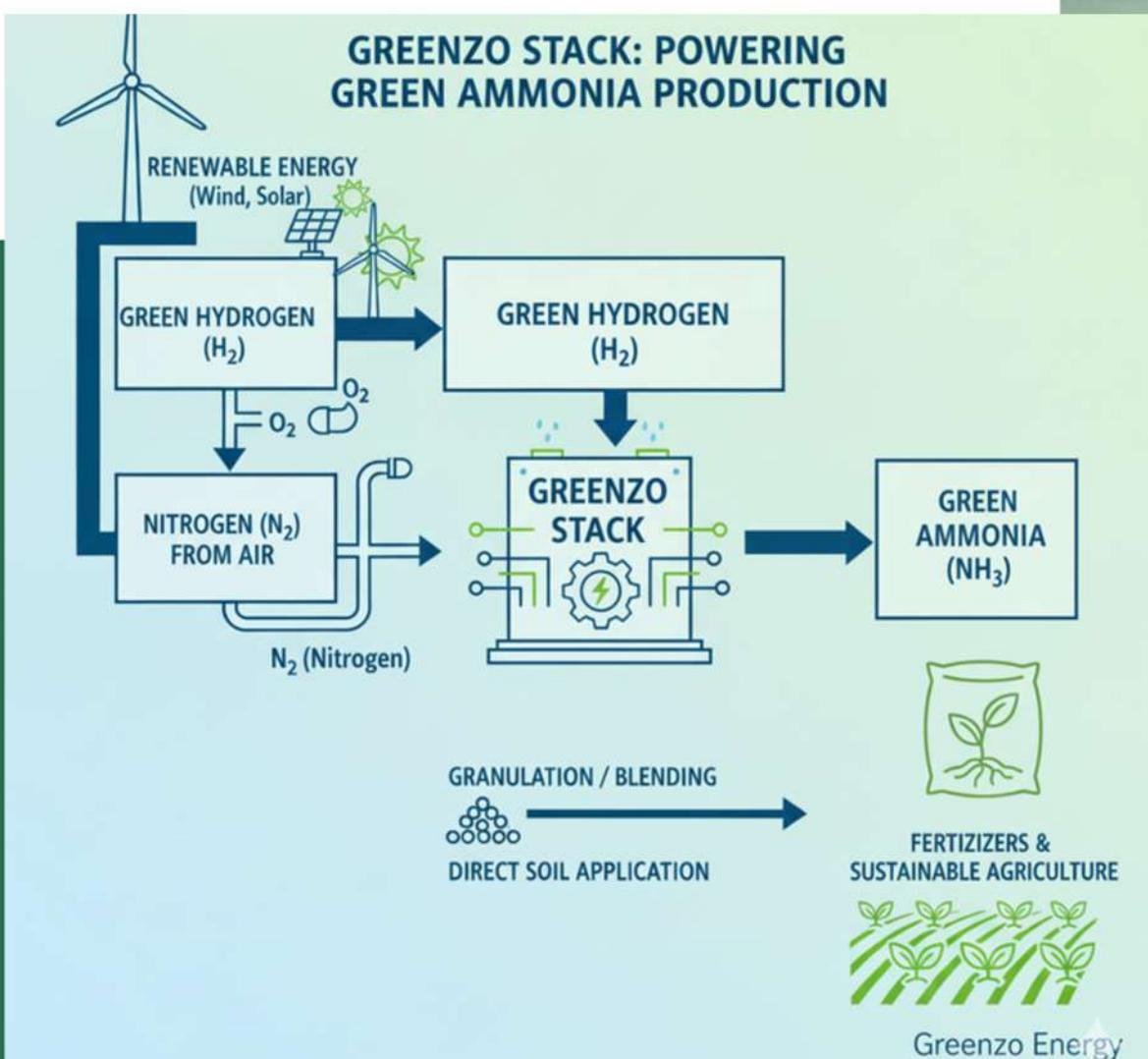
GREEN AMMONIA FERTILLERS

SIGNIFICANT YIELD INCREASE
HEALTHIER, NUTRITIOUS CROPS

NURTRING A SUSTAINABLE & PRODUCTIVE FUTURE

3. OUR TECHNOLOGY EDGE

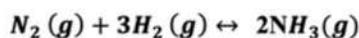
3.1 Hydrogen Production:

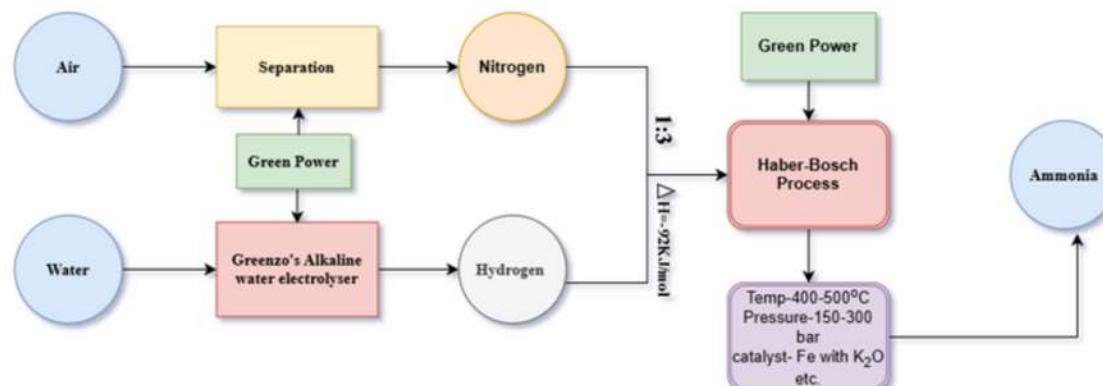

- Produced from renewable-powered electrolysis of water.
- 100% clean and sustainable, ensuring zero fossil input.

3.2 Ammonia Synthesis

- Integration with the Haber-Bosch process for large-scale NH_3 production.
- Powered by renewable electricity, enabling true "green ammonia."

3.3 Hydrogen Recovery from Ammonia


- Conversion technologies include electrochemical, thermochemical, and photocatalytic methods.
- Use of innovative catalysts (Ni, Co, La, perovskites) to reduce reliance on costly Ru catalysts.


4. PROCESS OF MAKING GREEN AMMONIA

The Haber-Bosch process is the industrial method used to produce ammonia (NH_3) from nitrogen (N_2) and hydrogen (H_2) gases.

Reaction:

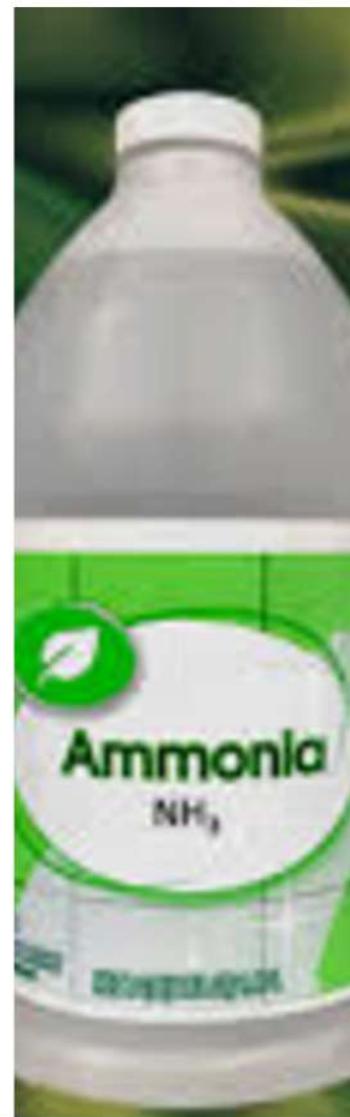
Nitrogen from Air (78%) and hydrogen from Alkaline water electrolyser

3.4 Process Conditions

Temperature: $\sim 400\text{--}500\text{ }^\circ\text{C}$, Pressure: $\sim 150\text{--}300\text{ bar}$, Catalyst: Iron (Fe) with promoters like K_2O , Al_2O_3 , CaO to increase efficiency. Purification to remove CO , CO_2 , and sulfur.

Synthesis loop:

- **N_2 and H_2 mixed in ratio 1:3.**
- **Passed over iron catalyst at high pressure and temperature.**
- **Only 15-20% of gases convert to NH_3 in one pass.**


Ammonia Separation:

- a. Reaction mixture cooled $\rightarrow \text{NH}_3$ condenses as a liquid.
- b. Unreacted $\text{N}_2 + \text{H}_2$ recycled back.

5. HOW GREENZO CAN SUPPORT GREEN AMMONIA PRODUCTION

At Greenzo, we specialize in alkaline water electrolyser stacks that enable cost-effective and scalable green hydrogen production. Since hydrogen is the key feedstock for green ammonia, our technology plays a central role in building a reliable green ammonia value chain.

6. HYDROGEN PRODUCTION FOR AMMONIA SYNTHESIS

- Our alkaline water electrolyzers deliver high-efficiency hydrogen from renewable electricity. This hydrogen, when combined with nitrogen (from air separation units), enables green ammonia synthesis via the Haber-Bosch process.
- Greenzo stacks are engineered for MW-scale projects, making them ideal for integration with large-scale ammonia plants.
- Our low operating cost and long stack lifetime provide a competitive edge over other electrolyser technologies, crucial for reducing the levelized cost of green ammonia.
- By ensuring a stable hydrogen supply, we support smooth integration with ammonia liquefaction, cryogenic storage, and global shipping infrastructure.
- With Greenzo electrolyzers, green ammonia plants can displace fossil-based hydrogen (from natural gas), helping industries transition to carbon-free fertilizers, fuels, and hydrogen carriers.
- This not only supports local energy security but also positions projects for export-ready green ammonia markets, where cryogenic storage and transport are essential.

7. CONCLUSION:

The fertilizer industry stands at a pivotal moment in the transition toward sustainable agriculture. By adopting green ammonia as a low-carbon alternative, manufacturers can significantly reduce greenhouse gas emissions while meeting the growing global demand for nitrogen-based fertilizers.

Integrating renewable hydrogen and clean ammonia technologies not only enhances environmental responsibility but also strengthens economic resilience by future-proofing production processes. Green ammonia thus represents a win-win solution supporting both productive agriculture and a zero-carbon future.

Green Ammonia: The Clean Energy Fuel Transforming Global Sustainability Goals

CONTACT US

Phone: +91 991 066 9939

Email: info@greenzoenergy.com

Website: www.greenzoenergyindia.com

Head Office:

Unit 1104, 11th floor, Surya Kiran Building, CP, Delhi 110001 India

Branch Office:

4th Floor, 410, Sarthik Square, Bodakdev, Ahmedabad Gujarat,
380054

Manufacturer Unit:

Plot no 678&679, GIDC, Sanand Gujarat 382110, India

GREENZO ENERGY INDIA LIMITED

